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Abstract. The effect of the small scales on the source term in Lighthill's acoustic analogy is investigated, with the

objective of determining the accuracy of large-eddy simulations when applied to studies of flow-generated sound.

The distribution of the turbulent quadrupole is predicted accurately, if models that take into account the trace of the

SGS stresses are used. Its spatial distribution is also correct, indicating that the low-wave-number (or frequency)

part of the sound spectrum can be predicted well by LES. Filtering, however, removes the small-scale fluctuations
that contribute significantly to the higher derivatives in space and time of Lighthill's stress tensor T O. The rms

fluctuations of the filtered derivatives are substantially lower than those of the unfiltered quantities. The small

scales, however, are not strongly correlated, and are not expected to contribute significantly to the far-field sound;

separate modeling of the subgrid-scale density fluctuations might, however, be required in some configurations.

Key words: turbulent shear layers, large-eddy simulation, subgrid-scale models, acoustic analogy, Lighthill's

analogy.

1. Introduction

Flow-generated noise is important in many engineering applications. It affects the observability
and detection of aerial and submarine weapons systems, the comfort of passengers in airliners

and automobiles, and may limit the operation of aircraft due to regulations that establish

maximum levels of noise near airports. Furthermore, the interaction between sound and
structures can have destructive effects.

An important source of noise is the sound generated by turbulence. This source was

considered secondary in many applications (especially those involving aircraft, since the jet

noise was usually dominant); however, the progress in jet-engine construction and design
over recent years has been such that the airframe-noise problem is becoming more and more
relevant.

Thus, there has been a considerable effort in recent years to study turbulent noise, to
understand the mechanisms that lead to its generation, and, if possible, to control it. The

numerical approach, in particular, has been the subject of significant research, because of the

wealth of information that calculations can give compared to experiments, while requiring

fewer, less restrictive, assumptions than theoretical studies.

The availability of powerful supercomputers has made possible the direct computation of
sound, which involves the solution of the compressible Navier-Stokes (or Euler) equations to

obtain both the near-field hydrodynamics and the far-field sound. Reviews of recent develop-

ments in computational techniques can be found in several references [1,2, 3, 4]; here, we will
only give some general considerations. The direct computation of sound requires no assump-

tion, and provides multi-point information in the time (or frequency) domain. It is, thus, the
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most general and powerful computational tool for aero-acoustic studies. It, however, suffers

from significant limitations [4, 5]: it requires numerical schemes of high order of accuracy,

reliable non-reflecting boundary conditions, and, most importantly, very large computational
domains, given the disparity of scales between the aerodynamic and acoustic fields. For these

reasons, the computational effort demanded by calculations of this kind is extreme, and only
very simple cases have been attempted.

An approach that is more likely to be useful to study complex engineering applications
is the acoustic analogy technique [6, 7], in which the aerodynamic and acoustic fields are

decoupled. The near-field velocity and pressure are computed, and then used to calculate the

far-field acoustic field, which is obtained from equations in which the aero- or hydrodynamic
properties appear in a source term. This approach requires some simplifying assumptions:

typically, two-way coupling is neglected, _Ind the sound source (i.e., the turbulent region of the

flow) is required to be compact. It is, however, a technique that holds much promise of being

an engineering tool, as long as relatively inexpensive ways of computing the velocity field

can be found. Acoustic analogies have been used, in recent years, to study the sound emitted

by homogeneous isotropic turbulence [8], jet noise [9], or the sound radiation during laminar
breakdown [10]. A comparison between the direct computation of sound and the acoustic

analogies was provided by Mitchell and co-authors [11], who confirmed the accuracy and
validity of the acoustic analogy, as well as by Colonius and coworkers [3, 4].

Except for the jet-noise computations cited above [9], most of the calculations that use
acoustic analogies have been carried out by direct numerical simulations (DNS), in which all

scales of motion are resolved. However, since the computational cost ofa DNS is proportional
to the third power of the Reynolds number, it is unlikely that this technique can be applied suc-

cessfully in the near future to engineering flows, i.e. at high Reynolds number and in complex

geometries. Thus, the computation of the aerodynamic field by simpler, less computationally
intensive methods, is desirable.

Two other techniques are available to obtain the velocity and pressure fields in turbulent

flows: the solution of the Reynolds-averaged Navier-Stokes equations (RANS) and large-

eddy simulation (LES). In the former, the governing equations are time- or phase-averaged;
the dependent variables are then the ensemble-averaged velocity and pressure, and the effect of

the turbulent fluctuations appears in the Reynolds-stress term which must represent the effect

of all the scales of motion that have been removed in the averaging process. Several methods

are available to parameterize the Reynolds stresses, ranging from simple, algebraic closures,
to very complex, second-order models that require the solution of transport equations for

each component of the Reynolds-stress tensor and for the viscous dissipation. This approach

has two main limitations: first, the turbulence models tend to be not very general, since
they are required to represent a disparate range of very different scales: coherent structures

that are deterministic in nature, and depend strongly on the boundary conditions, and small

eddies, more random and stochastic in character that can be more easily described in terms

of statistical theories of turbulence. Furthermore, since RANS methods are based on phase-

or time-averaging, they can only yield ensemble data, and most (or all) of the important
information on the frequency content of the sound is lost.

The large-eddy simulation technique is a compromise between DNS and RANS: in LES
the large, energy-carrying scales of motion are computed exactly, while only the small,

subgrid scales are modeled. Since the latter depend essentially on the viscosity, and tend to be

more homogeneous and isotropic than the coherent eddies, their effect on the large, resolved

scales, which appears through the subgrid-scale (SGS) stress term, can be parameterized fairly
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accurately by simple algebraic models. Since the evolution of the larger eddies is calculated

accurately, LES can yield more accurate and complete results than RANS calculations, yet

at a fraction of the cost of DNS. For these reasons, LES has become increasingly popular

as a tool to study the physics of turbulent flows in configurations more complex than can be

investigated by DNS. The development of a new generation of dynamic models [I 2, 13, 14],

that allow the calculation of transitioning, relaminarizing and turbulent flows, while requiring

few, if any, ad hoc adjustments, has made LES attractive for computations of technological

relevance.

One issue that has not been addressed before, and that might affect the application of LES to

sound computations, is the effect of the small scales on the source term in Lighthill's analogy.

As mentioned above, in LES the smallest scales of motion disappear because of the averaging

process, and their effect on the large scales is modeled. Mankbadi and co-workers [9] computed

the sound directly from the resolved-scale velocity, assuming that the SGS field contribution

to the sound source and the effect of the filtering operation were negligible. Although the

contribution of the small scales to the momentum transport is usually small, their contribution

to the sound generation may be more significant, in view of the fact that the source terms in

the acoustic analogies involve derivatives of large-scale and SGS stresses, which are naturally

more affected by the small scales.

This paper will deal with that particular issue, namely, the significance of the subgrid-scale

contribution to the sound source, and its implications on the modeling of both the SGS stresses

and the SGS density fluctuations. This objective will be achieved through an a priori analysis

of the velocity fields obtained from the direct simulation of a turbulent flow. The velocity

fields will be filtered, and the resolved and SGS contributions to the source will be computed.

The source term calculated by means of the complete velocity will then be compared to that

obtained from the resolved velocity (and modeled SGS stresses). The effects of filtering and

order of accuracy of the differencing schemes will also be discussed.

In the next section, the mathematical formulation of the problem will be laid out, both for

the LES governing equations and models, and for the acoustic analogy under consideration.

Results will be presented and discussed in Section 3. Finally, conclusions will be drawn and

recommendations for future work will be made in Section 4.

2. Problem formulation

2.1. FILTERED EQUATIONS OF MOTION

In LES the resolved velocity and pressure are defined by the convolution of the original

quantity with a filter function

7=.f f(x')G(x-x')dx' , (11

where the integral is extended over the entire computational domain D, and G(x - x') is the

filter function, which determines the type of averaging performed to define the subgrid scales.

Commonly used filters include the top-hat filter in real space

I/A if Ixl .< A/2 (2)G(x)
L 0 otherwise,
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the Gaussian

G(x)= 6 exp -_2,] (3)

and the Fourier cutoff filter, best defined in wave space I

G(k)= { i ifk_<Tr/A0 otherwise,
(4)

where A is the filter width, usually expressed in terms of the grid size Axi.

Applying the filtering operation (1) to the Navier--Stokes equations, we obtain the filtered

Navier-Stokes equations, which, for an incompressible flow, take the form:

O_i
= 0, (5)

Oxi

O-ai 0 O-p Orij
(6)

where r 0 = uiu j - UiUj are the SGS stresses, which must be modeled.

2.2. LIGHTHILL'S ACOUSTIC ANALOGY

By combining the conservation of momentum with the time derivative of the mass-conservation

equation, Lighthill [6] obtained the analogy that bears his name, which can be written as

O2P a2V2p_ 02Tij
at 2 OxiOxj '

(7)

(o.i o.,)
(8)

where a_ is the sound speed at free-stream (undisturbed) conditions. Lighthill's analogy (7-8)

simplifies the coupled aerodynamic/acoustic problem to that of the propagation of sound in a

fictitious acoustic medium at rest, on which the stress distribution Tij is acting. Given TO, the
pressure perturbation is given by

[ (P - Poc = 4-7 r OxiOx j Tij y, t Ix-Y])]a_ dy, (9)

where p_ is the ambient pressure. For points in the far field the integrand in (9) can be

approximated by the second time derivative taken at the retarded time, yielding

_1 xix a 0 2 Ix_--.yt _] dy"P--p_ 4ra2 x3 f -j_ [Tij (y,t a_ / (lO)

Lighthill's analogy is exact, but it requires that the stress distribution be known, and that

it be zero in the region where the sound is calculated. If the DNS approach is used, the stress
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tensorTij can be obtained from the velocity field. When LES or RANS are used, however, only
the large-scale or ensemble-averaged parts of Tij are available. They are given, respectively,

by

Tij = puiuj + p'rij + 6ij(P - a2 p) - # \ Oxj + Oxi ] '
(11)

(0(ud
(Tij) = + aij((p) - -, \ 0xj + )'

(12)

where (.) represents the ensemble average (time- or phase-average). Here and in the following,

the flow is assumed to be incompressible.

A comparison of Equation (8) with (! 1) and (12) highlights the difference between the
information that can be obtained with the three approaches: with DNS the entire spectral

distribution of T 0 is known, and complete information (mean values, higher-order moments,
and frequency spectra) can be obtained. On the other hand, the filtering operation implies that

with LES only Tij, the low wave-number part of Tij, is known. This includes the contribution

of the nonlinear interactions between resolved (Pgigj) and subgrid scales (PTij) that result in
resolved wave numbers; all interactions that generate wave numbers greater than the cutoff

are lost because of the filtering operation. Tij has the correct mean (since most filters are

mean-preserving), but its higher moments are affected by the filtering operation, which, by its
very nature, causes irretrievable loss of information. This is independent of the model chosen

to parameterize the SGS stresses.

Similar considerations can be made regarding the source obtained from RANS, which, if
time-averaging is used, contains no wave-number (or frequency) information at all; if phase-

averaging is used, it may contain the frequency information due to the coherent structures

that are preserved by the phase-averaging process only. The same considerations made above

regarding the independence of this feature from the model used are valid here.

Thus, with reference to Figure 1, we can see that two sets of problems are raised by the
filtering operation used in LES, and by the ensemble-averaging used in RANS: first is the

fact that the unresolved part of Tij may contribute substantially to the sound generation; it is

important, therefore, to evaluate quantitatively its relevance. Secondly, it is useful to determine
how accurately the SGS models (or, for RANS, the Reynolds-stress models) represent the

contribution of the unresolved velocity scales to the resolved part of Tij. These two problems

are independent in the sense that improved modeling of the SGS or Reynolds stresses can only
affect the second item, and an entirely different approach is required for the first problem,

involving possibly separate modeling of the pressure (or density) fluctuations due to the

unresolved part of Tij.

2.3. A PRIORITESTS

One method that is often used to study LES models and the physics of the large-scale/subgrid-

scale interactions is the a priori test. This technique is based on the availability of velocity

and pressure fields (usually from DNS), which are filtered to yield resolved and subgrid-scale
fields. The exact SGS quantities can then be computed, as well as the predictions of SGS

stress models. This method is inexpensive (if the DNS results are available), gives results that

are not affected by numerical errors (since, typically the DNS calculations are performed on
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Contribution of
the resolved velocity

to the spectrum

Figure 1. Sketch of the wave-numberspectrum of the Tii.

very fine grids with high order of accuracy), and allows to study the physical phenomena that

affect the subgrid scales without any modeling assumption being required. Its disadvantages

are that the Reynolds numbers are substantially lower than those of typical LES (since they
are determined by the maximum Reynolds number achievable by the DNS), and that it is
based on a frozen, instantaneous picture of the turbulence field that does not take into account

the nonlinear dynamic interactions that take place between the resolved scales and the SGS
model in an actual calculation.

In this work we have used the velocity fields obtained from the simulation of a plane channel
flow, a classical test case for which very accurate and well-resolved DNS data is available.

The present database is from a simulation of the flow at a Reynolds number (based on channel

half-width, _i, and friction velocity, u_) Re_ = 180; 128x97× 128 grid points were used,

and the governing equations were solved by a pseudo-spectral Fourier-Chebychev collocation

method. The nonlinear terms were dealiased with the 3/2 rule. The results compared very well
with experiments and other DNS calculations [15].

The velocity fields were filtered in the homogeneous directions by the top-hat (2) and
cutoff (4) filters with widths varying between _i = 2Axi and _i = 4Axi; these filter

widths correspond to realistic situations, since the subgrid scales contain 15-25% of the

turbulent kinetic energy with these widths (see [15]). Several schemes were used to compute
the derivatives: second- and fourth-order differencing schemes, as well as high-order, spectral
approximations.

The tensor Tij and its filtered counterpart, Tij, were computed, as well as their second
time derivatives 02Tij/Ot 2 and 02Tij/Ot 2, which affect the far-field sound. The distribution
of OZTij/OxiOxj was also computed, together with its filtered counterpart.

3. Results and discussion

3.1. THE STRESS FIELD

Figure 2 shows the average of selected terms of the Tq tensor. At low Mach numbers the
pressure term is small, and will be neglected in this investigation. The main contribution comes

from the resolved scales, the viscous stress being significant only in the near-wall region. The
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22 component; (c) 33 component (d) 12 component.

exact SGS stresses are compared with the prediction of two models: one is the dynamic model

[12], an eddy-viscosity model of the form

ri_ = rij - @rkk = --2UT-Sij = -26_ 2[SISij,
(13)

where

is the resolved strain-rate tensor, and the model coefficient, C, is determined by means of the

contraction proposed by Lilly [161

l (LijMij)
C = - (15)

2 (MmnMmn}'

where Lij = uiu j - UiUJ are the resolved turbulent stresses, Mij = A [SISij - z2k ]SISij , the

application of a filter with width A = 2A is denoted by_ and (.) represents averaging over a
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plane parallel to the wail. The second is the scale-similar model proposed by Liu, Meneveau

and Katz [17], which parameterizes the SGS stresses as _-ij = 0.45Lij.

Figure 2 shows that with LES the mean value of the tensor Tij can be computed quite
accurately. The behaviour of the Tll term is due to the fact that the mean velocity U was

not removed during the computation of puiuj. The largest discrepancies are observed in the

22 and 33 terms, and they are due to the eddy-viscosity assumption used to parameterize
the subgrid scales, which allows to model only the anisotropic part of the SGS stress tensor;

the contribution of the SGS stress-tensor trace, Tkk/3, is particularly significant near the wall

and in the buffer layer, where the I 1 term is dominant. Eddy-viscosity models cannot predict

accurately the mean value of the the normal elements of the Tij tensor unless the trace of the
SGS stress tensor is determined. We can accomplish this in two ways: either by solving an

additional equation for Tkk, or by using a scale-similar or mixed model of the type proposed

by Bardina et al. [18] or by Liu and coworkers [17]. Inclusion of the scale-similar part, in fact,

gives improved prediction of the normal terms of Tij (the dotted lines in Figure 2).

The rms of the same terms is shown in Figure 3, which highlights the effect of filtering:
the rms of Tij is lower than that of Tij by 10-15%. Since the SGS stresses have very low (for
this filter width) rms amplitude, the effect of the model is insignificant, and the sum of the

resolved contribution and modeled SGS stresses agrees with the sum of resolved and exact
SGS contributions.

Contours of the 11 and 22 components of the tensor Tij, at y+ = (1 - ly])u_/u = 12,

are shown in Figures 4 and 5. The low-speed streaks characteristic of the near-wall region

are evident in Figure 4. Both components show similar behaviours: Tij is smoother than
the Tij field, but the location of strong events is captured very well, although at somewhat

lower intensity (notice in particular the region highlighted in Figure 5). Both the dynamic

eddy-viscosity and the scale-similar model reproduce this behaviour quite accurately. Similar

results were obtained for all components of the T/j tensor, throughout the channel. Figure 6,
for instance, shows the Tl2 component at a location (y+ = 70) in the logarithmic layer. The

scale of the turbulent eddies at this distance from the wall is larger, but some difference can
still be observed between the unfiltered and filtered fields.

The correct prediction of the spatial distribution of Tij by LES is important for the correct

prediction of the frequency content of the emitted sound, which can be related, through
Taylor's hypothesis [19], to the wave-number spectrum of the sound source. If the spatial
distribution and scale of the quadmpoles are predicted correctly, so will be the wave-number

spectrum. If Tayior's hypothesis is valid (and numerical studies [20] indicate that, in the buffer

region and beyond, such is indeed the case), an accurate prediction of the spatial distribution

of the quadrupoles should, therefore, result in at least qualitatively accurate predictions of the
low-frequency content of the sound radiated.

3.2. THE FAR FIELD

The sound in the far field can be obtained from (10). It may be useful, therefore, to compare

the second derivatives of the quadrupole strength, T/j = 02Tij/Ot 2 and _ij = 02Tij/O t2.

Numerically, the time derivatives are typically obtained by second-order-accurate central

differences. Since most time-advancement schemes are also second-order-accurate, higher-
order approximations do not give improved accuracy. Although DNS and LES calculations are,
in general, over-resolved in time, since the CFL condition that determines the maximum time-

step allowable restricts the maximum time-step allowable to values significantly larger than
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the time-scale of the smallest eddies in the flow, the additional filtering operation introduced

by the second-order operator can have significant effects on the high-frequency structures.

The numerical differentiation may introduce errors through an additional temporal filtering:

if the second derivative of a complex exponential is calculated numerically, we will obtain

32
__C iwt _ --oJ2eiwt
5t 2

(16)

where J is the modified frequency, and, for the central second-order accurate operator, it

is equal to w sin(wAt)/(wAt). The amplitude of the second derivative of rapidly oscillating
functions will thus be reduced substantially: even for structures whose characteristic period is

equal to eight time-steps, the amplitude of the second derivative will be 80% of its true value.
Furthermore, the second derivative of a function is affected significantly by the short-lived

small, whose wave-length is near the grid cutoff, which are the structures most likely to affect

the higher derivatives. Since these structures are removed by the filtering operation, another

source of error is introduced in the calculation of Tij.
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Figure 7, in which the rms of several terms of the tensor Tij are shown, illustrates these

effects. We computed the second derivatives using two different time-steps, one equal to the
time-step of the DNS, and one that was twice as large, more typical of LES calculations in

which the grid size is coarser, and the CFL limitation is relaxed. The two results, respectively

the solid and dashed lines in the fi..gure, are nearly indistinguishable. The fact that, even if a

small time-step is used, the rms of Tij is 60% lower than that of Tij indicates that the temporal

filtering does not remove additional scales over the spatial one, which is the most significant.

While the rms and spatial distribution of Tij are not affected very much by the filtering, the

rms of Tij is. This is due to the fact that the small structures, as they are convected past an

Eulerian point, cause a rapid change of Tij in time, an effect that is amplified when second

derivatives are taken. The removal of those small scales by .the spatial filtering operation
inhibits the accurate calculation of the high-frequency part of Tij.

It should be remarked that the small eddies removed by the filtering operations are not
strongly correlated, and their contributions to the sound are likely to cancel out in the far field.

The contribution of the coherent eddies to Tij is still captured quite accurately, as shown in

Figures 8 and 9, in which contours of the Tll and Ti2 components are shown. The spatial

distribution of the regions of significant Tij is predicted correctly, and the large-scale part

appears well-captured. Only the contribution of the smallest scales is not present in the filtered

Tij.
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3.3. THE NEAR FIELD

As mentioned before, the expressions (9) and (10) are equivalent at far-field locations. The

quantity O2Tij/OziOz_ is, however, much more difficult to compute than Tij itself, being

dominated by small-scale structures. In fact, to compute it accurately, it is necessary to resolve

the entire dissipation spectrum. If, as is common in many DNS calculations, the spectra of the

Reynolds stresses exhibit two to three orders of magnitude of decay, the Fourier coefficients of

02Tij/OxiOxj, which are proportional to the wave-number squared multiplied by the Fourier

coefficients of Tij, do not decay appreciably over the range of the resolved wave numbers
and their spectrum is nearly flat. Thus, we would expect numerical errors and filtering to have

a significant effect. Furthermore, since the sound is due to the small amount of disturbance
left after the cancellation of the contribution to the sound of the positive and negative values

that are generated by the repeated differentiation, use of (9) to evaluate the far-field sound is

not advisable. Regardless of these caveats, an examination of the behaviour of 02Tij/Oxi Oxj

may at least give some bound on the accuracy that can be expected from LES and DNS

calculations, especially for the computation of the sound in the near-field, where (9) and ( !0)

are not equivalent.

Figure 10 shows the mean and rms profiles of oZYij/OxiOxj. In plane channel flow, the

only term that contributes to the average value is the 22 term. Since (v) = 0 in parallel flow,
the viscous contribution vanishes, and the total and filtered contributions can be written as

02 (Yi j > 02

OxiOzJ - Oy 2 (p(vv) ) ;

O2(Yu> 0_
OxiOxj - Oy2 (P(_) + p(TZ2)) •

(17)
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If the exact SGS stresses are used, these two quantities are identical, since the filter is mean-

preserving. The difference between this value and the value of 02Tij/OxiOxj obtained with

the dynamic model is again due to the eddy-viscosity assumption used to parameterize the

subgrid scales; use of the scale-similar model gives improved results.

The normal components of the SGS stress tensor affect the mean of 02Tij/OxiOxj more

than its rms value. Figure 10b compares the rms profiles of 02Tij/OxiOxj with those of

c)2Tij/OxiOxj. A significant difference can be observed between the unfiltered and filtered

values of this quantity, a difference not due to modeling errors, but purely to the filtering

operation, which removes the high-wave-number (and frequency) components of the velocity

field that affect the higher derivatives of T/j more than they affect Tij itself. This difference is

of the same order as the difference between the rms of Tij and Tij observed before.

The difference between the rms values of 02Tij/OxiOxj we obtained using the exact and

the modeled SGS stresses, is small. While the wall-normal component of Tij determines the

mean value of the strength of the quadrupoles, its fluctuations are mostly affected by the shear

components, which are typically predicted more accurately than the normal ones by the SGS
model.

To determine whether the filtering procedure alters the wave-number (or frequency) spectra

of 02Tij/OxiOxj in Figure 1 1 the contours of the unfiltered and filtered quantities are shown

in a plane parallel to the wall at y+ = 12. The locations at which large-magnitude regions

of 02To/OxiOxj and OZTij/OxiOxj occur are fairly well-correlated, although regions of

significant strength are, of course, less sharp after the filtering.
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This correspondence is due to the fact that the regions in which 02Tij/OxiOxj has sig-

nificant magnitude are fairly well correlated with energy-producing events (which are well-

predicted by the LES) in the buffer region: Figure 12 compares the contours of 02Tij/OxiOxj

and _ij with those of Tll and TI2 (representative, respectively, of the low-speed streaks and

the principal shear component of the Reynolds stress tensor). Strong correlation between the
Reynolds stresses and oZYij/OxiOxj can be observed at several locations (some of them

highlighted in the figure).

3.4. EFFECT OF FILTER WIDTH AND DIFFERENCING SCHEME

Some remarks should be made about the effects of the filter width and the differencing scheme
used. When the cutoff filter with width Ai = 4/kxi was used, results similar to those presented

here were obtained. If a top-hat filter with width Ai = 4Axi was applied, however, the rms

of 02rij/OxiOxj decreased further (Figure 13), reflecting the fact that the subgrid scales
contain an excessive amount of energy to ensure an accurate calculation. The Tij field is also

substantially smoother (Figure 14).
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Errors in the numerical evaluation of the second derivatives are significant only if the

distribution of 02Tij/OziOzj is desired: very little difference was observed in Ti3, whether

the SGS model was computed by spectral approximation or second-order differences. More

significant were the differences between the OZTia/OziOzj, which are illustrated in Figure 15.

The peak values of O_Tij/OziOx3 when the second-order differences and the coarser filter

were used (Figure 15d) were three times smaller than those obtained with spectral differences

and the finer filter.

4. Conclusions

An a priori study of the quadrupole distribution in Lighthill's analogy [6] has been carried

out. The velocity fields obtained from well-resolved simulations of plane channel flow were

filtered to yield resolved and subgrid-scale velocity components. These, in turn, were used to

compute the tensor Tij and its filtered counterpart Tij. The filtered and unfiltered values of

02Tio �Or _ and O_Tij / OxiOx3 were also compared.
The mean value of the strength of the 02Tij/OXiOX j is evaluated accurately; it is, however,

desirable to use models that include the trace of the SGS stress, which can give a significant

contribution to the mean 7722. The rms of Tij, on the other hand, is lower than the unfiltered

one. Modeling the SGS stresses does not cause significant errors beyond those introduced by

the filtering itself.

The results presented indicate that the spatial distribution of the source is affected mostly

by the resolved scales. Thus, we should expect the wave-number distribution of the filtered
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source to have the correct shape (i.e., peaks at the correct wave-numbers) up to the cutoff

wave-number. In conditions in which Taylor's hypothesis of frozen turbulence holds, it is

possible to relate the wave-numbers to the frequencies through a convection velocity; an

accurate prediction of the spatial distribution of the source should, therefore, result in at least

qualitatively accurate predictions of the low-frequency content of the sound radiated.

The present investigation supplies criteria to evaluate the accuracy with which turbulent

sound can be predicted by LES calculations. The contribution of the largest turbulent eddies

(such as the hairpins present in a turbulent boundary layer) is predicted accurately, although

some reduction of their amplitude is observed due to the filtering operation. SGS models that

account for the trace of the SGS stresses are, however, required to obtain accurate prediction

of the source. Based on the present results, it can be conjectured that the contribution of

coherent structures (shed vortices, for instance) would also be captured accurately, resulting

in satisfactory predictio," of the low-wave-number part of the spectrum.

The high-wave-num, ",r components of the source, on the other hand, are removed by

the filtering procedure, and cannot be recovered by more accurate SGS modeling. These

components affect significantly the higher derivatives ofT/j, both with respect to time or space.

This limitation is likely to affect similarly the RANS prediction. These small-scale fluctuations

are largely uncorrelated, and are not expected to affect the far-field sound significantly, and in

most cases (when coherent structures are present that account for the greatest part of sound

generated, which are accurately computed) their accurate prediction might be of secondary

importance. In other applications it might be necessary to derive a model for the unresolved
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contribution to the sound intensity, p2, which can be decomposed into a term, _2 due to the

resolved source Tij, plus another due to the unresolved part, _-p = p2 _ _2.

A possible way to evaluate the SGS contribution to the sound intensity, _-p, might be

to consider the subgrid scales in a computational control volume (a grid cell) as a small

volume of homogeneous isotropic turbulence. Turbulence theory can then be applied (see, for

instance, [21,7]) to estimate the sound emitted by the small volume of homogeneous isotropic

turbulence, i.e., the subgrid scales, subjected to the local shear and strain field given by the

large-scale strain-rate tensor Sij. The development of this type of model can, conceivably,

correct the computed sound pressure, and be a valuable contribution towards making LES a

useful tool for the prediction of these type of problems.
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